Introduction

The term metaplastic carcinoma of breast (MCB) was first introduced by Huvos et al.\[^1\]\ It comprises of two components, the usual ductal adenocarcinoma and the metaplastic component.\[^2,3\]\ It is a rare and aggressive subtype of breast carcinoma, with poor prognosis having reported incidence of 0.2%–0.6% of all breast cancers. MCB is not chemosensitive due to tumor heterogeneity and are also unresponsive to hormonal therapy.\[^4,5\]

We report a series of four cases of MCB, diagnosed over the past 15 years. Their cytohistologic features and immunohistochemical findings are presented in Table 1.

Methods

In this retrospective study in a tertiary care setting, patient records of 880 archived cases of breast carcinoma in the past 15 years (2002–2015), were retrieved. Four histopathologically diagnosed cases of metaplastic carcinoma out of a total of 880 archived cases of breast carcinoma were selected. Cytology reports were available in three of these cases. Immunohistochemistry (IHC) has been performed in all four cases.

Cytology had been performed by fine-needle aspiration and smears were processed using Giemsa and Papanicolaou stains. Histopathology sections were stained by standard H and E technique. IHC was performed on paraffin tissue sections using the following monoclonal antibodies and standard staining protocols:

- Estrogen receptor (ER) (Biocare, RTU, SP1)
- Progesterone receptor (PR) (Biocare, RTU, SP2)
- Her2/neu (Biocare, RTU, EP3)
- Cytokeratin (CK) 5/6 (Dako, RTU, D5/16B4)
- CK 7 (Biocare, RTU, OV‑PL12/30)
- Epithelial membrane antigen (EMA) (Biocare, RTU, Mc5)
- Vimentin (Biocare, RTU, V9)
- S100 (Biocare, RTU, 15E2E2)
- CD 68 (Dako, RTU, PG‑M1[3]).

A review was conducted to study the cytohistological correlation along

Abstract

Metaplastic carcinoma of breast (MCB) is a rare breast malignancy. It is important to differentiate metaplastic carcinoma from malignant phyllodes and primary breast sarcomas because of their differing biological behavior and prognosis. We report four cases of MCB diagnosed over the past 15 years. Retrospective review of patient records in a tertiary care setting to retrieve cases diagnosed as MCB. Patient records of the past 15 years (2002–2015) were retrieved. Four histopathologically diagnosed cases of metaplastic carcinoma out of a total of 880 archived cases of breast carcinoma were studied along with their cytopathology. Immunohistochemistry was performed on sections. MCB comprised 0.45% of all breast malignancies. The four cases of MCB included MCB with chondroid metaplasia, spindle cell carcinoma, adenosquamous carcinoma, and carcinosarcoma. All the tumors were invariably triple negative (estrogen receptor, progesterone receptor, and Her2/Neu negative) and expression of other epithelial and mesenchymal markers was variable. MCB is a rare breast malignancy. Differential diagnosis is related to the presence of heterologous elements and degree of atypia seen in the lesion. It is important to be aware of this entity as it carries a poor prognosis.

Keywords: Breast, carcinoma, fine-needle aspiration cytology, histopathology, immunohistochemistry, metaplastic
with the findings on IHC in these four cases diagnosed as MCB.

Results

The patient details, fine-needle aspiration cytology (FNAC), histopathology, and IHC findings in the four cases of MCB are summarized in Table 1.

Case 1

A 40-year-old female presented with a firm mass measuring 3 cm in lower inner quadrant of the breast. On FNAC a diagnosis of MCB with osteochondroid, differentiation was suggested.

Sections from the well-circumscribed mass in the modified radical mastectomy (MRM) specimen showed a nonencapsulated tumor with peripheral cellular areas and central abundant osteochondroid matrix. No ductal pattern could be identified. All lymph nodes (15/15) isolated from the specimen were negative for tumor metastases.

The tumor was triple negative (ER, PR, and Her2/neu). The osteoclast-like giant cells (OGCs) expressed CD 68 while tumor giant cells stained negatively for CD 68. A final diagnosis of MCB with osteochondroid differentiation was made [Figure 1].

Case 2

A 39-year-old female presented with 7 cm ulcerated mass in upper outer quadrant left breast. FNA was reported as high-grade ductal carcinoma, breast (not otherwise specified [NOS]). MRM specimen showed ulcerated skin with gray-white to brown mass with necrotic and cystic areas. Sections showed highly vascular tumor comprising of admixture of plump ovoid to polygonal cells, bizarre spindle cells and tumor giant cells separated by hyalinized and hemorrhagic stroma. Frequent no heterologous elements were identified. No lymph node metastasis was seen in 12/12 lymph nodes dissected from the tumor. The tumor was triple negative but was strongly positive for vimentin and focally positive for EMA and CK. The final diagnosis of MCB, sarcomatoid variant was offered [Figure 2].

Case 3

A 25-year-old female presented with an ulcerated mass measuring 5 cm in diameter, in upper inner quadrant of the right breast. FNA was not available in this case. Sections from MRM specimen showed ulcerated skin with subepithelium infiltrated by tumor cells with high nucleo-cytoplasmic ratio, moderate anisonucleosis, and abundant pale to dense eosinophilic cytoplasm (squamous giant cells; ER – Estrogen receptor; PR – Progesterone receptor; EMA – Epithelial membrane antigen; CK – Cytokeratin; LIQ – Lower inner quadrant; UIQ – Upper inner quadrant; UOQ – Upper outer quadrant. Scoring of staining pattern of IHC

<table>
<thead>
<tr>
<th>Case number</th>
<th>Age</th>
<th>Size and location of tumor</th>
<th>FNAC findings</th>
<th>Histopathology</th>
<th>Immunohistochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>40</td>
<td>3 cm, firm irregular mass, LIQ</td>
<td>Large polyhedral to spindle pleomorphic cells with anisonucleosis lying in chondromyxoid background</td>
<td>Cellular areas of spindle cells around osteochondroid matrix</td>
<td>ER, PR, Her2/Neu negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dissociated pleomorphic spindle cells in an inflammatory background</td>
<td>Frequent mitoses</td>
<td>EMA and CK positive in epithelial cells</td>
</tr>
<tr>
<td>2.</td>
<td>39</td>
<td>7 cm, ulcerated mass, UOQ</td>
<td>Dissociated spindle pleomorphic cells</td>
<td>Admixture of plump ovoid to polygonal cells, bizarre spindle cells and tumor giant cells</td>
<td>ER, PR, Her2/Neu negative</td>
</tr>
<tr>
<td>3.</td>
<td>25</td>
<td>5 cm, ulcerated mass, UOQ</td>
<td>FNA not done</td>
<td>Islands of large tumor cells separated by fibrous bands</td>
<td>ER, PR, Her2/Neu negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dissociated spindle pleomorphic cells</td>
<td>Focal squamous differentiation</td>
<td>CK +vein glandular component</td>
</tr>
<tr>
<td>4.</td>
<td>28</td>
<td>3 cm, firm mass, UIQ</td>
<td>Fascicles of pleomorphic spindle cells admixed with large epithelial cells</td>
<td>Tendency to form glandular structures</td>
<td>ER, PR, Her2/Neu negative</td>
</tr>
</tbody>
</table>

FNAC – Fine-needle aspiration cytology; OGC – Osteoclast-like giant cells; ER – Estrogen receptor; PR – Progesterone receptor; EMA – Epithelial membrane antigen; CK – Cytokeratin; LIQ – Lower inner quadrant; UIQ – Upper inner quadrant; UOQ – Upper outer quadrant. Scoring of staining pattern of IHC
differentiation). Overlying epidermis was free of tumor. All the lymph nodes (10) isolated from the axillary tail were free of tumor. The tumor was triple negative. The glandular component expressed expression of CK7, and the squamoid component expressed pan-keratin and CK 5. Vimentin was not expressed in the tumor cells. The case was reported as adenosquamous carcinoma [Figure 3].

Case 4

A 28-year-old female presented with firm 3 cm mass in upper inner quadrant left breast. FNAC smears were signed out as “suggestive of a high-grade carcinoma.” Sections from the gray-white mass on MRM specimen showed proliferation of pleomorphic spindle-shaped cells in bundles and fascicles with interspersed large hyperchromatic epithelial cells. Tumor giant cells and multinucleated OGCs were also present. Only one out of 12 axillary lymph nodes showed metastatic carcinoma deposits. The tumor was triple negative on IHC. The final diagnosis of carcinosarcoma was given in Figure 4.

Discussion

MCB is a rare heterogeneous tumor having areas of spindle, squamous, chondroid, or osseous elements in addition to the features of usual breast adenocarcinoma.\(^1,^4,^6\) Due to its heterogeneous nature, precise histological categorization has always been difficult, and these lesions have been given various confusing names.\(^4,^6\) Five variants of MCB were suggested by Wargotz and Norris.\(^7\) Subsequently, the World Health Organization laid down the defining criteria for these variants\(^2,^8\) [Table 2].

MCB usually presents in postmenopausal age group as a painless, large palpable mass; the median age at presentation being 47–61 years.\(^4,^5\) However, in our series, all the cases were below 45 years. Local recurrence and lung metastasis are commonly seen in MCB while nodal metastases are comparatively less common (6%–26%) than
Sood, et al.: Metaplastic breast carcinoma

Invasive breast carcinoma NOS. The metastasis is most often by carcinomatous component.

The radiological features vary from well-defined to ill-defined and speculated, calcified to noncalcified as in the first case.

The histogenesis of MCB has been equally debatable, immunohistochemical studies, and electron microscopy point toward myoepithelial origin, whereas other studies have suggested its origin from multipotent undifferentiated cells.

Cytological diagnosis of MCBs is difficult due to morphological heterogeneity. The presence of pleomorphic cells in a background of amorphous/chondroid/osteoid material may be a helpful feature on FNA as was seen in Case 1 of the present series. In rest of the cases, FNAC could not diagnose MCB accurately, and a diagnosis of high-grade ductal carcinoma of breast was considered.

The histopathology of this lesion is characteristic, but lesions with high degree of atypia need to be

differentiated from malignant phyllodes tumor (MPT), primary chondrosarcoma of breast and malignant adenomyoepithelioma. The presence of neoplastic epithelial cells in the former and demonstration of positivity for vimentin, S-100 protein and CKs 7, 8, and 19 is of

Table 2: World Health Organization classification of metaplastic carcinomas of breast, with diagnostic criteria

<table>
<thead>
<tr>
<th>Broad categories</th>
<th>Subtypes</th>
<th>Diagnostic criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purely epithelial</td>
<td>Squamous</td>
<td>Squamous component must be >90%</td>
</tr>
<tr>
<td></td>
<td>Large cell nonkeratinizing</td>
<td>It should not arise from skin, nipple or any skin adnexal elements</td>
</tr>
<tr>
<td></td>
<td>Spindle cell</td>
<td>There should be no other primary Squamous cell carcinoma</td>
</tr>
<tr>
<td></td>
<td>Acantholytic</td>
<td>There should be no other ductal/mesenchymal neoplastic component</td>
</tr>
<tr>
<td></td>
<td>Adenocarcinoma with spindle cell differentiation</td>
<td>Invasive adenocarcinoma with abundant spindle cells</td>
</tr>
<tr>
<td></td>
<td>Adenosquamous including mucopidermoid</td>
<td>CK7 positive negative</td>
</tr>
<tr>
<td>Mixed epithelial mesenchymal</td>
<td>Carcinoma with chondroid metaplasia</td>
<td>Adenocarcinomas with interspersed areas of squamous differentiation</td>
</tr>
<tr>
<td></td>
<td>Carcinoma with osseous metaplasia</td>
<td>Infiltrating carcinoma with often heterologous mesenchymal component (e.g., chondroid, osteoid)</td>
</tr>
<tr>
<td></td>
<td>Carcinosarcoma</td>
<td>Carcinosarcoma: When mesenchymal element is malignant</td>
</tr>
</tbody>
</table>

Figure 3: (a) Neoplastic cells (arrow) in nests with interspersed areas of squamous differentiation with overlying normal skin (arrowhead). (×100); (b) keratin pearls (arrow). (×400); (c) Strong cytokeratin 7 positivity. (×400); (d) Strong cytokeratin 5/6 positivity of squamous component. (×400)

Figure 4: (a) Scattered and clustered neoplastic cells with hyperchromasia, anisonucleosis and spindly cytoplasm (×100); (b) higher magnification (×400); (c) Sections Show proliferation of pleomorphic spindle-shaped cells in bundles and fascicles with interspersed large hyperchromatic epithelial cells; (d) Tumor giant cells and multinucleated OGCs; (e) strong vimentin expression (x400); (f) CD68 expression in giant cells (×400)
diagnostic importance. CK expression may be focal/patchy hence extensive sampling, and assessment may be required.[5,6] These tumors are universally triple negative, as was also seen in all our cases.[6]

The presence/absence of ordinary ductal carcinoma component is important in differentiating it from malignant myoepitheliomas. The absence of smooth muscle markers actin further assists in diagnosis.[10]

OGCs have been reported in invasive ductal carcinoma. Carcinoma of breast with OGCs is now a separate entity and is characterized by the presence of OGCs admixed with usual picture of breast carcinoma. These are possibly represent a reactive infiltrate with a different origin than that of the carcinoma. In our study, these giant cells were noticed in Case 1 and 4.[11,12]

Differential diagnosis of MCB with spindle cell component is related to the degree of atypia. Lesions with mild atypia need to be distinguished from exuberant scars, fibromatosis, nodular fasciitis, myofibroblastomas, and pseudoangiomatous stromal hyperplasia,[6] whereas those with higher degree of atypia need to be differentiated from carcinosarcomas and primary breast sarcomas. Carcinomatous component demonstrated by CK immunopositivity of the neoplastic spindle cells favors diagnosis of MC.[13]

MPT has leaf-like pattern, cellular overgrowth, stromal atypia, high mitotic rate (>10/10 hpf), and infiltrative borders along with lack of CK expression in spindle cells but benign epithelial component should be carefully searched for, using a broad panel of CKs. Expression of p53 and CD34 in spindle cells is used to differentiate this entity from spindle cell carcinoma.[6]

A differential diagnosis of adenosquamous carcinoma must be considered in cases of MCB with squamous differentiation. Demonstration of a dual pattern of pan CKs and vimentin expression is needed to clinch the diagnosis, as was seen in Case 3. p63 antibody positivity is near confirmatory of adenosquamous differentiation. Squamous component ranges from poorly differentiated nonkeratinizing to well differentiated, keratinizing. Squamous component is triple negative however the ductal component may show positivity to ER, PR depending on its differentiation.[2] MCB has a high potential for local recurrence; hence, aggressive local treatment is recommended.[14,15]

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References