A Case Report and Review of B-Lineage Acute Lymphoblastic Leukemias with Cannibalistic Lymphoblasts: A Unique Morphologic and Molecular Genetic Entity?

Abstract
Cannibalism is a type of “cell-in-cell” phenomenon commonly described in myeloid lineage malignancies. Although lymphocytes and their precursors are inherently non-phagocytic, there are sporadic case reports describing cannibalism by leukemic lymphoblasts. In the current manuscript, we report the case of a pediatric B-lineage acute lymphoblastic leukemia (B-ALL) patient showing cannibalistic lymphoblasts and have reviewed the clinical and laboratory characteristics of similar cases documented in literature. Our manuscript highlights that all reported B-ALL patients showing cannibalistic lymphoblasts had intra-cytoplasmic vacuolations, and all such treatment-naive pediatric patients were ETV6-RUNXI fusion positive and had aberrant expression of myeloid lineage antigens.

Keywords: Cannibalism, ETV6-RUNXI, pediatric, precursor B-lineage acute lymphoblastic leukemia

Introduction
Cannibalism by leukemic blasts is well described in acute myeloid leukemias (AML). Although lymphocytes and their precursors are inherently non-phagocytic, nine cases of leukemic lymphoblasts exhibiting phagocytosis have been documented in literature.[1-6] Through this manuscript, we report our pediatric B-lineage acute lymphoblastic leukemia (B-ALL) patient who had cannibalistic blasts at diagnosis and review the clinical and laboratory characteristics of similar cases reported in literature. Interestingly, all lymphoblastic leukemia patients with phagocytic lymphoblasts reported till date had unique morphologic features and all pediatric B-ALL patients (100%) of this genre were positive for ETV6-RUNXI fusion transcript.

Case Scenario
A 14-year-old Indian male presented with extreme fatigue and myalgia for 1 month. He was afebrile and had marked pallor and hepatomegaly. Hemogram revealed hemoglobin of 49 g/L, platelets of 127 × 10^9/L, and leukocytes of 15.8 × 10^9/L.

Myeloperoxidase (MPO)-negative blasts comprised 75% of circulating leukocytes and 96% of bone marrow nucleated cells. These blasts were 2–4 times the size of a mature lymphocyte, had opened up chromatin and scanty basophilic cytoplasm. Multiple cytoplasmic vacuolations were observed in 88% of the blasts, and 12% of blasts showed erythrophagocytosis or thrombophagocytosis or cannibalism [Figure 1]. Flow cytometric immunophenotyping (FCI) was consistent with B-ALL with aberrant myeloid lineage marker expression (CD19$^\text{moderate}$, CD10$^\text{bright}$, HLA-DR$^\text{moderate}$, CD34$^\text{dim to moderate}$, CD13$^\text{moderate}$, CD33$^\text{moderate}$, CD3$^\text{negative to dim}$, cytoplasmic CD79a$^\text{moderate}$, cytoplasmic CD22$^\text{moderate}$, cytoplasmic MPO$^\text{negative}$, and cytoplasmic CD3$^\text{negative}$). Qualitative reverse-transcriptase-polymerase chain reaction revealed ETV6-RUNXI fusion transcript positivity. There was no leukemic central nervous system infiltration at diagnosis.

After the confirmation of diagnosis, the patient’s family was counseled about the disease and treatment options. Due to financial constraints, the family wished to continue therapy at the local place. Hence, he was started on 6-week induction with low-dose chemotherapy protocol comprising...

B K Karthik Bommannan¹, Man Updesh Singh Sachdeva¹, Shano Naseem¹, Alka Khadwal², Neelam Varma¹
¹Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India, ²Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Submission: 04-Jun-2020
Revised: 04-Aug-2020
Accepted: 05-Sep-2020
Published: 31-Dec-2020

Address for correspondence: Prof. Man Updesh Singh Sachdeva, Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh - 160 012, India, E-mail: drmanupdeshpgi@yahoo.co.in

How to cite this article: Bommannan BK, Sachdeva MU, Naseem S, Khadwal A, Varma N. A case report and review of B-lineage acute lymphoblastic leukemias with cannibalistic lymphoblasts: A unique morphologic and molecular genetic entity? Indian J Med Paediatr Oncol 2020;41:917-9.

Access this article online
Website: www.ijmpo.org
DOI: 10.4103/ijmpo.ijmpo_280_20
Quick Response Code:

© 2020 Indian Journal of Medical and Paediatric Oncology | Published by Wolters Kluwer - Medknow
Cannibalistic leukemic B-lymphoblasts

Discussion

Cellular cannibalism is a type of “cell-into-cell” phenomenon, wherein a viable cell is irreversibly engulfed by a nonprofessional phagocyte. A cannibalistic cell can engulf a cell of its own lineage (homotypic cannibalism) or of different lineage (xeno-cannibalism). Cannibalism is different from phagocytosis, wherein the latter involves a professional phagocytic cell (histiocyte/macrophage) engulfing a nonviable cell. Though phagocytosis can be seen in both benign and malignant pathologies, cannibalism is pathognomonic of advanced malignancies.

Among acute leukemias, xeno-cannibalism in the form of erythropagocytosis by neoplastic blasts has been commonly documented in cases of AML with monocytic lineage differentiation, AML with maturation, AML without maturation, acute megakaryoblastic leukemia, mixed phenotype acute leukemia, and acute undifferentiated leukemia. In AMLs, xeno-cannibalism has been associated with t(8;16)(p11;p13), t(16;21)(p11;q22), t(10;17)(p13:p12), inv(8)(p11q13), t(16;21)(p11;q22), t(3;8;7)(q27;p11;q12), del(20)(q11), and t(8;21)(q22;q22).

Although conventional lymphocytes and their precursors are inherently nonphagocytic, cannibalism by leukemic lymphoblasts has been reported in nine patients till date. The first documentation of xeno-cannibalism in lymphoblasts was by Foadi et al. in 1978, where both erythropagocytosis and thrombophagocytosis were observed in four relapsed ALL patients, but the lineage commitment of these lymphoblasts was not disclosed. In 1984, Colon-Otero et al. reported the first case of erythropagocytosis by lymphoblasts in an AML patient with del(20)(q11), a cytogenetic aberrancy that has also been reported in AML and MDS patients with cannibalism. None of these patients had concurrent hemophagocytic histiocytosis in the bone marrow. Interestingly, 67% of these patients had near-normal platelet counts, and lymphoblasts of all these patients (100%) showed intracytoplasmic vacuolations. These intracytoplasmic vacuolations were also observed in the relapsed ALL patients documented by Foadi et al. Comprehensive FCI data available in four patients revealed the aberrant expression of myeloid lineage antigens (CD13 and/or CD33) in all (100%).

As lymphocytes and their precursors are inherently nonphagocytic, acquisition of phagocytic phenotype in leukemia lymphoblasts is unexpected. In relapsed lymphoblastoid leukemia patients presenting with cannibalism, Foadi et al. have hypothesized that prolonged exposure to chemotherapy might have triggered a new clone of leukemic lymphoblasts bestowed with phagocytic capability. However, chemotherapy exposure is less likely to be a risk factor as 60% (six of ten cases described) of B-ALL patients with cannibalistic lymphoblasts were treatment naïve.

Colon-Otero et al. have proposed that acquisition of phagocytic property in treatment-naïve lymphoblasts might be due to tumor cell dedifferentiation causing aberrant expression of complement receptors (CR1 and CR3), receptors for Fc region of IgG and gp150 (receptor for fimbriae) on the blasts. However, prospective evidences demonstrating expression of these above-mentioned receptors in cannibalistic B-lymphoblasts are not available. Hence, the pathogenesis of cannibalism in leukemia is still an enigma.

Regarding the prognostic relevance of cannibalistic B-lymphoblasts, an elderly treatment-naïve B-ALL patient with del(20)(q11) and all four relapsed B-ALL patients presenting with cannibalistic lymphoblasts had dismal outcomes marred with either disease relapse or mortality. However, all the newly diagnosed pediatric B-ALL patients, including those diagnosed above 10 years of age, were ETV6-RUNXI fusion positive and had optimistic survival without disease relapse or mortality.

Figure 1: Note the presence of prominent vacuolations in the blasts. (a and b) Blasts showing cannibalism; (c) blast with erythropagocytosis. Inset shows myeloperoxidase-positive erythrocyte engulfed by a blast; (d) thrombophagocytosis by blast. Inset shows myeloperoxidase-negative platelet engulfed by a blast. All slides are May–Grünewald–Giemsa stained, and the insets are cytochemical-myeloperoxidase stained (×100).
Table 1: Clinical and laboratory characteristics of B-lineage acute lymphoblastic leukemia patients with cannibalistic blasts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>1984</td>
<td>2012</td>
<td>2013</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Country</td>
<td>The USA</td>
<td>Belgium</td>
<td>Korea</td>
<td>The USA</td>
<td>France</td>
</tr>
<tr>
<td>Age</td>
<td>87</td>
<td>4</td>
<td>3</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Hb in g/L</td>
<td>105</td>
<td>95</td>
<td>81</td>
<td>47</td>
<td>67</td>
</tr>
<tr>
<td>WBC count ×10^9/L</td>
<td>1.5</td>
<td>10.4</td>
<td>7.9</td>
<td>NA</td>
<td>7.6</td>
</tr>
<tr>
<td>Platelets ×10^9/L</td>
<td>220</td>
<td>126</td>
<td>183</td>
<td>57</td>
<td>85</td>
</tr>
<tr>
<td>BM blast %</td>
<td>NA</td>
<td>NA</td>
<td>72</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>PB blast %</td>
<td>NA</td>
<td>NA</td>
<td>17</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Splenomegaly (%)</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>NA</td>
<td>Yes</td>
</tr>
<tr>
<td>Hepatomegaly (%)</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>NA</td>
<td>Yes</td>
</tr>
<tr>
<td>Karyotyping</td>
<td>46,XY, del(20)(q11)</td>
<td>Complex*</td>
<td>46,XY(t;12;21) (p13;q22)</td>
<td>Near-tetraploid**</td>
<td>46,xy[20]</td>
</tr>
<tr>
<td>Extramedullary disease</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>ETV6-RUNX1 fusion</td>
<td>Absent*</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Vacuolated blasts</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Xeno-cannibalism</td>
<td>Present</td>
<td>ND</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Homotypic-cannibalism</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Associated HLH</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>FCI aberrancy</td>
<td>ND</td>
<td>ND</td>
<td>CD13+, CD33+</td>
<td>CD13+, CD33+</td>
<td>CD33+</td>
</tr>
<tr>
<td>Outcome</td>
<td>Relapsed after 8 months</td>
<td>Uneventful till 14 months</td>
<td>Uneventful till maintenance</td>
<td>Uneventful for 5 years</td>
<td>Not available</td>
</tr>
</tbody>
</table>

*46−47,XX,add(8)(q23),del(12)(p11.2),add(19)(q13.3),+add(21)(p11.2), **88<4n>, XX, −X, −X, add(1)(p36.1)x2, −7, −8, add(12)(p11.2), add(12)(p12), −14, −15, add(15)(q15), der(20) t(5;20) (q12;p11.2), +add(22)(p11.2), add(22)(q12), *Not evaluated by reverse-transcriptase-polymerase chain reaction or by fluorescent in situ hybridization. NA – Not available; ND – Not declared; HLH – Hemophagocytic lymphohistiocytosis; FCI – Flow cytometric immunophenotyping; Hb – Hemoglobin; WBC – White blood cell, BM – Bone marrow, PB – Peripheral blood

Conclusion

Due to the limited number of cases documented in literature, it is still premature to arrive at any concrete conclusions regarding the prognostic and clinical relevance of cannibalistic B-lymphoblasts. However, our manuscript highlights that all reported B-ALL patients showing cannibalistic lymphoblasts had intracytoplasmic vacuolations (100%), and all such treatment-naïve pediatric patients were ETV6-RUNX1 fusion positive (100%) with aberrant expression of myeloid lineage antigens.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the legal guardian has given his consent for images and other clinical information to be reported in the journal. The guardian understands that names and initials will not be published and due efforts will be made to conceal identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References