Intracranial Metastases of Intramedullary Spinal Cord Low-Grade Astrocytoma

Abstract
This paper reports a case of intramedullary spinal cord low-grade (LG) astrocytoma that developed brain metastases after 21 months. A 6-year-old child presented with lower spine pain and falls during daily activity. A spinal cord mass was detected using spinal magnetic resonance imaging (MRI), and brain MRI was normal. The spinal lesion was partially resected, and pathological findings revealed LG astrocytoma (WHO Grade II). The patient underwent thoracolumbar radiotherapy. He returned 21 months following initial admission with symptoms of nausea, vomiting, headaches, and seizure. Brain MRI revealed multiple intracranial masses at the posterior fossa, left lateral ventricle, cerebellopontine angles, and left Meckel cave. A recurrent lesion was detected in the thoracic and lumbar regions of the spinal cord and in the cauda equina. The patient underwent chemotherapy. This rare case warns practitioners to monitor closely the cases of spinal cord astrocytoma that are diagnosed as LG tumors based on histology.

Keywords: Intracranial metastases, low-grade astrocytoma, pediatric, spinal cord tumor

Introduction
Spinal cord astrocytoma is a rare neoplasm in the pediatric population. The previous literature has reported that its prevalence is <1% of all primary neoplasms of the central nervous system and that it comprises 6%–8% of all primary spinal cord tumors. Brain metastasis of a primary spinal cord astrocytoma has rarely been reported, and most of the reported cases have been caused by high-grade astrocytoma. However, very few cases of intracranial metastasis of low-grade (LG) spinal cord astrocytoma have been reported in pediatrics. Abel et al. have reported a spinal cord pilocytic astrocytoma that disseminated to the cerebral subarachnoid spaces of a 2-year-old boy. Jang et al. reported brain metastasis of an intramedullary LG astrocytoma in a 45-year-old patient. This study concluded that the LG spinal cord astrocytoma might spread to intracranial structures without malignant transformation. Ryu et al. reported two malignant transformations of LG spinal cord astrocytoma among 12 patients. Yamagami et al. reported a case of a 44-year-old patient with LG astrocytoma that metastasized to the brain after 6 years.

This case report presents intracranial metastasis of LG spinal cord astrocytoma in a child. The purpose of this paper is to provide further evidence for practitioners about the metastasis of initially diagnosed LG spinal cord astrocytoma to the brain specifically in pediatrics.

Case Report
A 6-year-old boy presented with a 1-month history of lower back pain and left crural monoplegia. Spinal magnetic resonance imaging (MRI) revealed an intramedullary spinal cord tumor at the Level T8–T12. Partial resection of the tumor was performed, and the pathological findings of the resected tumor were consistent with LG astrocytoma (WHO grade II). A histological examination of the tumor showed tumoral tissue composed of neoplastic astrocytes with increased cellularity, mild atypia, and low mitotic activity. No vascular endothelial proliferation or necrosis was present [Figure 1]. A total dose of 45 Gy was delivered to the spine over 6 weeks. After 2 months, the patient returned with lumbar pain and
Sanei-Sistani, et al.: Metastases of low-grade astrocytoma

Intracranial metastases of spinal cord astrocytoma are related to high-grade tumors and intracranial metastases of spinal cord LG astrocytoma is a rare phenomenon.\cite{4,10,12} The mechanism of intracranial metastasis of intramedullary spinal cord LG astrocytoma is not well known.\cite{10,13} Some previous researchers have hypothesized that metastasis of LG astrocytoma can develop due to resection and manipulation.\cite{14}

However, in a review article, Abel et al. reported that none of the current studies have proved a correlation between the resection of a LG tumor and its metastasis.\cite{10} Malignant transformation has also been reported as a reason for the brain metastasis of spinal cord LG glioma.\cite{15,16} However, there is some evidence of brain metastasis of intramedullary LG astrocytoma without malignant transformation.\cite{4,10} Malignant transformation of LG glioma in children is very unusual compared to its occurrence in adults. Irradiation and genetic disorders such as neurofibromatosis Type 1 were proposed as predisposing factors for malignant transformation of LG glioma.\cite{16,17} In our patient, radiotherapy had been administered after partial resection of the spinal cord tumor. Intracranial metastasis of the recurrent spinal cord tumor occurred approximately 2 years following the diagnosis of the primary tumor. Malignant transformation is thought to be a possible cause of metastasis in our patient. It was impossible to perform a biopsy on the patient’s recurrent spinal cord tumor due to his condition.

Another hypothesis about our patient is a sampling error in a mixed tumor. In other words, the pathological examination may have been performed on a portion of the

Discussion

This paper reports a case of intracranial metastasis of intramedullary LG astrocytoma in a child. Most cases of intracranial metastasis of spinal cord astrocytoma are related to high-grade tumors and intracranial metastasis of spinal cord LG astrocytoma is a rare phenomenon.\cite{4,10,12} The mechanism of intracranial metastasis of intramedullary spinal cord LG astrocytoma is not well known.\cite{10,13} Some previous researchers have hypothesized that metastasis of LG astrocytoma can develop due to resection and manipulation.\cite{14}

However, in a review article, Abel et al. reported that none of the current studies have proved a correlation between the resection of a LG tumor and its metastasis.\cite{10} Malignant transformation has also been reported as a reason for the brain metastasis of spinal cord LG glioma.\cite{15,16} However, there is some evidence of brain metastasis of intramedullary LG astrocytoma without malignant transformation.\cite{4,10} Malignant transformation of LG glioma in children is very unusual compared to its occurrence in adults. Irradiation and genetic disorders such as neurofibromatosis Type 1 were proposed as predisposing factors for malignant transformation of LG glioma.\cite{16,17} In our patient, radiotherapy had been administered after partial resection of the spinal cord tumor. Intracranial metastasis of the recurrent spinal cord tumor occurred approximately 2 years following the diagnosis of the primary tumor. Malignant transformation is thought to be a possible cause of metastasis in our patient. It was impossible to perform a biopsy on the patient’s recurrent spinal cord tumor due to his condition.

Another hypothesis about our patient is a sampling error in a mixed tumor. In other words, the pathological examination may have been performed on a portion of the

Discussion

This paper reports a case of intracranial metastasis of intramedullary LG astrocytoma in a child. Most cases of intracranial metastasis of spinal cord astrocytoma are related to high-grade tumors and intracranial metastasis of spinal cord LG astrocytoma is a rare phenomenon.\cite{4,10,12} The mechanism of intracranial metastasis of intramedullary spinal cord LG astrocytoma is not well known.\cite{10,13} Some previous researchers have hypothesized that metastasis of LG astrocytoma can develop due to resection and manipulation.\cite{14}

However, in a review article, Abel et al. reported that none of the current studies have proved a correlation between the resection of a LG tumor and its metastasis.\cite{10} Malignant transformation has also been reported as a reason for the brain metastasis of spinal cord LG glioma.\cite{15,16} However, there is some evidence of brain metastasis of intramedullary LG astrocytoma without malignant transformation.\cite{4,10} Malignant transformation of LG glioma in children is very unusual compared to its occurrence in adults. Irradiation and genetic disorders such as neurofibromatosis Type 1 were proposed as predisposing factors for malignant transformation of LG glioma.\cite{16,17} In our patient, radiotherapy had been administered after partial resection of the spinal cord tumor. Intracranial metastasis of the recurrent spinal cord tumor occurred approximately 2 years following the diagnosis of the primary tumor. Malignant transformation is thought to be a possible cause of metastasis in our patient. It was impossible to perform a biopsy on the patient’s recurrent spinal cord tumor due to his condition.

Another hypothesis about our patient is a sampling error in a mixed tumor. In other words, the pathological examination may have been performed on a portion of the
primary tumor that contained only the LG tumor and the more invasive part of the tumor was not biopsied. Some studies have reported that histological techniques are probably insufficient to predict the future behavior of a LG glioma. Using biological markers and molecular genetics as parallel techniques is necessary to predict the tumor’s outcomes and behaviors more accurately.[10,13] Ryu et al. concluded that although the pathological grade of the tumor is the most important prognostic factor, the biological behavior of the tumor is not always compatible with the pathological findings.[1,2] A treatment plan should therefore be formulated based on imaging so as to achieve a better therapy.[2] However, there are insufficient radiological criteria to distinguish between benign and malignant tumors based on imaging techniques.

Inconsistent information has been reported on therapy for intramedullary spinal cord astrocytoma, particularly in children.[2,6,7,17-20] Gross total resection (if possible) is reported as the principal treatment for LG spinal cord astrocytoma. Adjuvant radiation therapy is used for partially resected tumors.[20,22] However, several studies have reported high levels of morbidity due to more aggressive therapeutic approaches to LG glioma, which have an extreme influence on quality of life.[19,23] It was the case in our patient, as he had also a high level of postoperative morbidity. Aggressive treatment has therefore only been suggested in specific cases.[19] The role of radiotherapy and chemotherapy for spinal cord astrocytoma is unclear.[20] and these therapies may influence the tumor’s biological behavior and increase the risk of malignant transformation.[16]

This case report warns clinicians regarding the treatment plan of LG spinal cord tumors. The patient should be carefully monitored, and particular attention should be paid to correlating the imaging of the tumor with pathological confirmation.

Acknowledgments

The authors would like to thank Mr. Moahammad Ali Boomeri, for his collaboration with us to report this case.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the legal guardian has given his consent for images and other clinical information to be reported in the journal. The guardian understands that names and initials will not be published and due efforts will be made to conceal patient identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References