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Abstract A new understanding of acute myeloid leukemia as a varied group of unique biologic
entity has emerged, as a result of the identification of various chromosomal aberra-
tions and their association with clinical prognosis and diagnosis. Following induction
treatment, cytogenetic examination can establish the presence of any residual
malignant cells, it’s recurrence, clonal evolution if any, or the formation of novel
abnormalities. The G-banded karyotype has been the gold standard method for
detecting all of these aberrations for years. The capacity to examine the entire genome
through karyotype analysis quickly enabled the detection of deletions, duplications,
and structural rearrangements across every chromosome, and the more frequent ones
were associated with particular aberrant clinical symptoms. Fluorescence in situ
hybridization (FISH) is a sensitive technology that aids in differential diagnosis or
therapeutic planning and provides rapid results. Furthermore, the combination of
cytogenetic and molecular profiling enables a more precise evaluation of disease
prognosis, diagnosis, classification, risk stratification, and patient treatment. Inter-
phase FISH analysis, in conjunction with G-banded chromosomal analysis, can be used
as amajor testing tool for the evaluation of hematological neoplasms. For accurate and
consistent descriptions of genomic changes identified by karyotyping and FISH, a
specified terminology is necessary. The International System for Human Cytogenomic
Nomenclature is the main source and provides instructions for documenting cyto-
genetic and molecular findings in laboratory reports. This review discusses the two
methods, karyotyping and FISH, their advantages and limitations, sample require-
ments, various FISH probes that are used, nomenclature for results reporting, and the
necessary quality control measures.
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Introduction

Acute myeloid leukemia (AML) is the most common adult
leukemia and is characterized by clonal expansion of imma-
tureblast cells in theperipheral blood and bonemarrowand is
genetically heterogeneous with variable prognosis.1 AML pre-
dominately affects those over 60 years of age, with progres-
sively dismal prognosis in advanced age, but can develop in
children andyoung adults too.2,3Acquired clonal chromosome
aberrations can be seen in the majority of AML patients. The
most important initiating step in a significant proportion of
adult and pediatric AML is the generation of chimeric fusions
arising due to events such as balanced translocations and/or
inversions/insertions in hematopoietic stem cells which have
been identified as recurrent genetic abnormalities by the
World Health Organization (WHO) classification 2008.4 These
recurrent genetic abnormalities are sufficient for diagnosing
AML regardless of blast count in bone marrow and also paved
theway formolecular studies that identified genes involved in
the process of leukemogenesis. The discovery of specific
chromosomal abnormalities and their relationship to cyto-
morphologic features, immunophenotype, and clinical out-
comehas led to anewunderstandingofAML asadiversegroup
of distinct biologic entities. The clinical significance of cyto-
geneticfindings inAML for classification and understanding of
pathogenetic mechanisms is growing, as evidenced by the
WHO classification of AML.5

Implications of chromosomal aberrations in the determi-
nation of clinical outcome and its value as an independent
prognostic indicatorwereestablishedby studies in large series
of AML patients.6–8 Based on chromosomal abnormalities and
genemutations, guidelines and risk scoring systemshavebeen
developed by the National Comprehensive Cancer Network
and the European Leukemia Net to help physicians design
tailored therapeutic strategies. The disease can be categorized
into favorable, intermediate, or adverse-risk groups
(►Table 1). For example, t(15;17)(q24.1;q21), [PML::RARA], t
(8;21)(q22;q22) [RUNX1::RUNX1T1], and inv(16)(p13.1q22)
[CBFB::MYH11] are associated with a favorable outcome,

whereas inv(3)(q21q26.2) or t(3;3)(q21;q26.2) [RPN1::
MECOM], t(6;9)(p23;q34) [DEK::NUP214], and KMT2A
(11q23) rearrangements fall under adverse risk and are asso-
ciated with a dismal prognosis.9,10 Cytogenetic testing is
critical in the selection of targeted therapy for various leuke-
mias. In acute promyelocytic leukemia (APL), novel fusion
protein PML::RARA is generated by a translocation between
chromosomes 15 and 17 and is effectively treated with tar-
geted therapy, ATRA (all-trans retinoic acid).11,12 Cytogenetic
analysis can confirm the residual disease, relapse, clonal
evolution, or the emergence of new anomalies after induction
chemotherapy.13,14

In cytogenetic laboratory, the G-banded karyotype is the
gold standard method for AML diagnosis and prognosis.15

Majority of chromosomal rearrangements can be detected
using conventional cytogenetics (CC). On the contrary, fluo-
rescence in situ hybridization (FISH) enables higher resolution
analysis for cryptic rearrangements not detected by CC, par-
ticularly in cases with normal karyotypes, which account for
approximately 33 to 50%ofAML.16Themost powerful tools for
detecting chromosomal aberrations are CC and FISH. Further-
more, combining cytogenetic and molecular profiling allows
for amoreaccurate assessmentofdiseaseprognosis, diagnosis,
categorization, risk stratification, and patient management. In
this review,we discuss the role of CC and FISH in the detection
of recurrent and nonrecurrent aberrations.

Classification

AMLwas classified according to the French-American-British
(FAB) classification system in the 1970s, defining eight major
AML subtypes (FAB M0 to M7). This classification system
relied on morphology and immunophenotyping criteria to
define AML.17 The WHO 2001, published a Classification of
Tumors of the Hematopoietic and Lymphoid Tissues as part
of the third edition of the series, WHO Classification of
Tumors, and incorporated genetics with morphology, cyto-
chemistry, immunophenotype, and clinical information into
diagnostic algorithms for the myeloid neoplasms.18 The

Table 1 European Leukemia Net (ELN) 2022 prognostic risk stratification based on cytogenetics

Risk category Cytogenetic abnormality

Favorable RUNX1::RUNX1T1-t(8;21)(q22;q22)
CBFB::MYH11-inv(16)(p13.1q22)/t(16;16)(p13.1;q22)

Intermediate MLLT3::KMT2A-t(9;11)(p21.3;q23.3)
Cytogenetic abnormalities not categorized as favorable or adverse

Adverse DEK::NUP214-t(6;9)(p23;q34.1)

KMT2A rearrangements-t(v;11)(?;q23.3)

BCR::ABL1-t(9;22)(q34.1;q11.2)

GATA2::MECOM- inv(3)(q21.3q26.2)/t(3;3)(q21.3;q26.2)

MECOM::?-t(3q26.2;?)

KAT6A::CREBBP-t(8;16)(p11;p13)

Monosomy 5/del(5q), Monosomy 7, Monosomy 17/abn(17p)

Complex karyotypes, Monosomal karyotypes
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WHO classificationwas further updated in 2008 and 2016 to
reflect rapidly evolving genetic and biologic information,
refining diagnostic criteria, and introducing new disease
entities.5 The WHO 2016 categorized AML into six main
groups: (1) AML with recurrent genetic abnormalities, (2)
AML with myelodysplasia-related changes (AML-MRC), (3)
therapy-related myeloid neoplasms (t-AML), (4) AML not
otherwise specified (NOS), (5) myeloid sarcoma, and (6)
myeloid proliferations related to Down syndrome.19 The
recent 5th edition of WHO classification published in 2022
did away with AML NOS and included AML-MRC and t-AML
as one single family further narrowing down AML to three
major subtypes: (1) AML with defining genetic abnormali-
ties, (2) AML, defined by differentiation, and (3) myeloid
sarcoma (►Supplementary Table S1, available in the online
version).20

Sample Requirement

Bone marrow is the preferred specimen to detect abnormal-
ities in AML. However, in some circumstances, peripheral
blood specimens with circulating leukemic blasts can be
used as an alternative specimen.21 FISH can be performed on
formalin-fixed paraffin-embedded (FFPE) tissues for patients
with myeloid sarcoma (extramedullary myeloid tumor,
granulocytic sarcoma, and chloroma) and bone marrow
aspirate smear slides, if fresh, untreated bone marrow is
not available. Bonemarrowaspirate (1 to 3mL), from thefirst
or second draw, should be collected in sodium heparin tubes
under sterile conditions. During transport, the specimen
should be kept at ambient temperature and cultured within
24 hours.22

Conventional Cytogenetics

CC (karyotyping) is a decade-old technique for a comprehen-
sive evaluation of chromosomal abnormalities in patients
with acute leukemia. Karyotyping provides a visual analysis
of the whole genome leading to the discovery of recurrent
translocations.

Short-term [direct (1 hour), overnight, 24 and 48hours)]
cultures are set up in complete media containing RPMI 1640,
fetal bovine serum, and antibiotics. Stimulant is not required
as these cells are already dividing. A mitotic inhibitor like
colchicine/colcemid is added which arrests the cells at the
metaphase stage. These cells are further processed using
prewarmed hypotonic solution (KCl) and fixed with chilled
Carnoy’s fixative (three parts methanol and one part glacial
acetic acid). The cells are then washed with Carnoy’s fixative
until a clear white pellet containing mononuclear cells is
obtained. Cell suspension is dropped on a clean glass slide,
treated with trypsin and stained with Giemsa producing a
series of light and dark bands corresponding to A-T rich and
G-C rich regions, on each chromosome. This is the most
widespread method known as known as Giemsa-Trypsin G
banding.23 The metaphases are captured using a camera,
through a microscope, onto an image analyzer system with
karyotyping software. Chromosomes are separated and

depending on their exclusive band pattern are karyotyped
and described according to the International System of
Human Cytogenomic Nomenclature 2020.24 A minimum of
20 metaphases are karyotyped in each AML case.

CC can detect both structural (translocations, insertions,
inversion, duplication, deletions) as well as numerical
(monosomy, trisomy, tetrasomy, etc.) abnormalities. The
identification of these numerical and structural abnormali-
ties carries prognostic, diagnostic, and therapeutic informa-
tion in AML.25

Advantages and Limitations of Conventional
Cytogenetics

The key benefit of CC, or karyotyping, is that it simultaneous-
ly provides a genome-wide overviewof all the chromosomes.
The ability to examine the complete genome using karyotype
analysis has made it possible to identify structural rear-
rangements and numerical abnormalities on all chromo-
somes with relative ease. Despite consistently providing
valuable and independent prognostic evidence and also a
foundation for risk evaluation, CC has major limitations. CC
cannot be performed in cases with the absence of actively
dividing mitotic cells. Due to limited banding resolution and
sometimes poor morphology metaphases, abnormalities
lesser than 5 to 10 megabases cannot be detected. Cryptic
gene fusions such as NUP98::NSD1, CBFA2T3::GLIS2, and
MNX1::ETV6, which indicate a poor prognosis in pediatric
AML and cryptic rearrangements of CBFB orKMT2A cannot be
detected by CC.26,27 Failure to recognize these aberrations
places the patients in wrong risk groups with improper
treatment. In 5% APL cases, t(15;17) is produced as a result
of complicated rearrangements or insertion events of PML
and RARA genes rather than the conventional t(15;17)
translocation which can be missed by CC. These patients
have a good prognosis and are responsive to targeted thera-
pies that is ATRA and arsenic trioxide.11 Additionally, in AML
cases with structural or numerical alterations or, more
significantly, those with normal karyotypes or nonprolifera-
tion of abnormal clones, cytogenetics does not shed any light
on the molecular events. Being a manual procedure, the
turnaround time for CC is as long as 7 to 15 days.

Fluorescence In Situ Hybridization

FISH is based on the principle of binding fluorescent probes
to complementary sequences of chromosomes with very
high specificity. The fluorescently labeled DNA probe and
the target DNA affixed to amicroscopic slide are codenatured
and allowed to hybridize in a preprogrammed humidified
chamber, wherein the complementary sequences anneal
with each other. Posthybridization washes are done to
remove excess, unbound probe and counter-stained with
an antifade solution containing DAPI (4′,6-diamidino-2-phe-
nylindole). The slides are observed under a fluorescent
microscope with specific filters where the signals are enu-
merated. The FISH technique can be performed on interphase
cells doing away with the requirement of mitosis. It can be
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applied on fixed bone marrow/peripheral blood specimens,
bone marrow aspirate smear slides, and FFPE slides. Quanti-
tative estimation can be done as a large number of interphase
cells can be analyzed. Aminimumof 200 cells are counted for
each probe and described according to the International
System for Human Cytogenomic Nomenclature (ISCN)
2020.24

Advantages and Limitations of Fluorescence
In Situ Hybridization

For the assessment of hematological neoplasms, interphase
FISH analysis can be performed as a primary testing method
in combination with G-banded chromosomal analysis. FISH
is a sensitive technique and delivers rapid results and can be
performed in few hours of time assisting in differential
diagnosis or therapeutic planning. It helps in detection of
cryptic gene rearrangements in AML with normal karyo-
types, poor morphology chromosomes, or inadequate sam-
ple. It is useful as an alternative diagnostic method in sample
lackingmetaphases as FISH can be performed on nondividing
interphase cells.22 The main drawback of FISH is that it can
only detect abnormalities in genomic regions targeted by the
probes applied as the selection of FISH probes is determined
by clinical presentation or disease suspicion.

Types of Fluorescence In Situ Hybridization
Probes

The choice of the probe is among the most crucial factors in
FISH analysis. A variety of probes, ranging from small to
whole genome clone probes (1–10 kb) can be used.28 There
are essentially three different types of probes with distinct
applications: (1) locus-specific probes, (2) centromeric
probes, and (3) whole chromosome probes.

1) Locus-specific probes are unique and specific DNA
sequences. These probes have wide applications on inter-
phase cells providing information on structural rear-
rangements like translocations, inversion, duplications,
deletions, and amplification. Three different types of
locus-specific probes are commercially available.

(a) Dual color dual fusion (DC DF) probes are applied in
cases with balanced rearrangements like transloca-
tions resulting in gene fusions, for example, t(8;21)
(q22;q22) is formed due to fusion of RUNX1T1 gene
present on chromosome 8 and RUNX1 gene present on
chromosome 21. These genes are differentially labeled
with red andgreenfluorochromeswhich appear as two
red and two green signals in normal interphase cells
(►Fig. 1A). In the event of a balanced translocation, the
partner genes fuse to form overlapping red/green
(yellow) fusion signals on derivative chromosomes.
Additionally intact one red and one green signals
remain on homologous chromosomes (►Fig. 1B).
(b) Break-apart (BA) probes are used for the detection
of single-gene rearrangementswithmultiple unknown
partner genes for example, KMT2A gene (11q23) and

inversions for example, CBFB (16q22). In a BA probe,
the 5′ and 3′ ends of the gene are labeled with two
different fluorochromes (usually red and green) pro-
ducing two yellow (fusion) signals in a normal
interphase cell (►Fig. 1C). Rearrangements like trans-
location or inversion result in separation of 5′ and 3′
ends resulting in one red, one green, and one fused
(yellow) signals. (►Fig. 1D)
(c) Dual /Triple color deletion (DC/TC del) probes are
utilized to target-specific genes or disease loci, such as
the TP53 gene at 17p13.1. Control probes are often
combinedwith deletionprobes in contrasting colors on
the same chromosome. A normal interphase cell dis-
plays the presence of both the target and control
probes (►Fig. 1E). Loss of fluorescent signal on the
targeted region indicates deletion (►Fig. 1F), while loss

Fig. 1 Different types of FISH probes. Normal (A) 2R2G, (C) 2F, (E)
2R2G and abnormal (B) 2F1R1G, (D) 1F1R1G, (F) 1R2G, (G) 1R1G, (H)
1G, (I) 3R FISH signal patterns on interphase cells (J) WCP showing
t(2;11) and (K) M-FISH showing complex karyotype on metaphase.
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of fluorescent signal of the targeted region along with
control probe suggests monosomy (►Fig. 1G).

2) Centromere enumeration probes (CEP) are repetitive
sequence probes hybridizing to alpha satellite sequences,
present in thousands of copies on the centromeres of the
chromosomes resulting in very bright fluorescent signals.
Centromeric-specific probes are used for detection of
numerical abnormalities like monosomy 7 (►Fig. 1H)
which has poor prognosis while trisomy 8 which carries
an intermediate prognosis in AML (►Fig. 1I).
3) Whole chromosome probes (WCPs) are fluorescently
labeled, chromosome-specific hybridizing to entire chro-
mosomes literally giving an appearance of “painting” and
thus are also known as whole chromosome painting
probes. These probes are generated either by flow sorting
or microdissection of aberrant chromosome.29,30 A single
or two differentially labeled WCPs can be mixed together
and applied on metaphase preparation for the identifica-
tion of marker chromosomes or structural rearrange-
ments like translocations which are difficult to interpret
by karyotyping (►Fig. 1J). Multicolor FISH and spectral
karyotyping are based on this principle where all 24
chromosomes can be simultaneously visualized in differ-
ent colors (►Fig. 1K). These techniques further help in the
refinement of aberrations found by conventional karyo-
typing. These probes cannot be used for the detection of
inversion or small deletions.31

Reporting of Conventional Cytogenetics and
Fluorescence In Situ Hybridization Results

A defined nomenclature is essential for the correct and
uniform description of genomic alterations discovered by
karyotyping and FISH. The ISCN is the primary resource and
offers guidelines for describing cytogenetic and molecular
findings in laboratory reports. These laboratory reports serve
as records thatmust be understandable, accurate, and should
provide all the details necessary for the correct interpreta-
tion of the cytogenetic findings to the clinicians. The chro-
mosome aberrations are denoted by a series of symbols and
short terminologies. For example, a reciprocal exchange of
chromosome segments between twodifferent chromosomes
is defined as translocation and is abbreviated as “t.” A
karyotype is described as the total number of chromosomes
followed by a sex chromosome complement separated by
comma, a set of parentheses describing the chromosomes,
their bands, and subbands involved in the aberration sepa-
rated by a semicolon. A male patient with 46 chromosomes
with a translocation between chromosomes 9 and 22 is
described as 46,XY,t(9;22)(q34.1;q11.2), while a normal
male karyotype is described as 46,XY.

Similarly, interphase FISH results begin with “nuc ish”
which stands for nuclear in situ hybridization, followed by
locus designation in parentheses, a multiplication sign (X)
and the number of signals seen. If the number of signals for
each probe is the same, the multiplication sign “X” is outside
the parentheses. If the number of hybridization signals
varies, then the multiplication sign “X” is inside the paren-

theses and the number of cells scored is placed in square
brackets “[ ].” The nomenclature of FISH depends on the type
of FISH probe used. As described in the earlier section, for a
BCR/ABL1 DC DF probe, a normal cell with two red and two
green signals is described as nuc ish(ABL1,BCR)X2[200],
while an abnormal interphase cell with a reciprocal fusion
between two differentially labeled genes, ABL1 and BCR,
produces 2F1R1G signal patternwhich is described as nuc ish
(ABL1,BCR)X3(ABL1 con BCRX2) [196/200] where “con”
stands for connected.24

Conventional Cytogenetics and
Fluorescence In Situ Hybridization Strategy
in Acute Myeloid Leukemia

In a cytogenetic laboratory, conventional karyotyping and
selection of FISH probes targeting specific recurring abnor-
malities in AML are based on their diagnostic and prognostic
utility (►Fig. 2, ►Table 2). Both, CC and FISH should be
concurrently applied for workup of newly diagnosed and
follow-up AML cases. As FISH has shorter turnaround time
than CC, prognostically relevant AML-associated cytogenetic
aberrations, cryptic rearrangements, and low-level abnor-
malities can be reported within 2 to 3 days aiding in
therapeutic decisions. At the same time, in the absence of
recurrent cytogenetic aberrations, CC helps in the detection
of other abnormalities for which FISH probes are not
available.

RUNX1::RUNX1T1–t(8;21)(q22;q22.3)
T(8;21), seen in 8 to 10% of de novo AML, involves RUNX1T1
on 8q22 and RUNX1 on 21q22 and is associated with a
favorable prognosis in children and adults4,32 (►Fig. 3A).
This aberration can be identified by CC though, in 3 to 4%
cases, t(8;21) is formed due to complex rearrangement
involving a third chromosome or cryptic insertion. Loss of
a sex chromosome (Y in males), followed by del(9q), del(7q),
þ8, and/or þ21, are the most common additional abnormal-
ity. Patients exhibit a favorable response to chemotherapy
with a high rate of complete remission and disease-free
survival, regardless of the existence of other abnormalities.4

PML::RARA – t(15;17)(q24.1;q21.2)
PML::RARA fusion is formed due to reciprocal translocation
between chromosomes 15 and 17 in APL and is associated
with favorable prognosis.33 Rapid detection of APL by FISH or
other techniques is essential due to the high risk of early
death and the availability of targeted treatment, ATRA.
Unlike the standard t(15;17), complex rearrangements or
insertions of the PML and RARA genes result in t(15;17) in 5%
of cases of APL which appear normal by CC. Several variants
and cryptic translocations involving RARA have been identi-
fied in about 10% APL cases which include ZBTB16::RARA– t
(11;17)(q23;q21), NPM1::RARA – t(5;17)(q35;q21), NUMA::
RARA – t(11;17)(q13;q21), STAT5B/RARA – der(17),
PRKAR1a::RARA – t(17;17)(q21;q24) or del(17)(q21),
BCOR::RARA – t(X:17)(p11;q21), and FIP1L1::RARA –t(4;17)
(q12;q21) with differential response to ATRA. FISH with a
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PML/RARA DC DF and RARA BA probe is useful for rapid
detection of PML::RARA or RARA variants leading to prompt
therapy.34,35 Good prognosis associated with t(15;17) does
not appear to be affected by other additional abnormalities
like trisomy 8, del(7q), or del(9q).36

CBFB::MYH11–inv(16)/t(16;16)(p13.1;q22)
Inv(16)(p13.1q22.1)/ t(16;16)(p13.1;q22.1) leads to fusion of
MYH11 at 16p13.1 with CBFB at 16q22.1 and is consistent
with favorable prognosis as this aberration is associatedwith
complete remission37 (►Fig. 3B). FISH with BA probe is
helpful as this rearrangement can be missed by CC in poor
morphology metaphases.38 The most common abnormality
along with inv(16) is trisomy 22, trisomy 8, and del(7q).39

KMT2A::? – t(11;?)(q23.3;?)
Rearrangements of KMT2A (lysine [K]-specific methyl trans-
ferase 2A earlier known as mixed-lineage leukemia 1) are
considered poor risk markers. Multiple rearrangements
(translocations, insertions, inversions) involving KMT2A gene
on 11q23 are found in 3 to 10% of de novo and therapy-related
AML. More than 80 translocation partners and 120 reciprocal

fusion variants have been documented.40 Common transloca-
tion partner needs to be identified due to variable prognosis,
for example, t(9;11)(p22;q23.3)–KMT2A::MLLT3 is considered
to have a better prognosis than t(6;11)(q27;q23.3) – KMT2A::
MLLT4 and t(10;11)(p12;q23.3) – KMT2A::MLLT10 which pre-
dict poor prognosis.41 Other common translocation partners
identified are t(4;11)(q21;q23.3) – KMT2A::MLLT2, t(11;19)
(q23.3;p13.3) – KMT2A::MLLT1, t(11;19)(q23.3;p13.1) –

KMT2A::ELL42 (►Fig. 3C).

BCR::ABL1–t(9;22)(q34.1;q11.2)
Philadelphia chromosome formed due to reciprocal translo-
cation between chromosomes 9 and 22 leads to BCR::ABL1
fusion, is found in 1% AML cases, and is regarded as high-risk
marker.10

DEK::NUP214–t(6;9)(p23;q34.1)
Fusion ofDEK at 6p23withNUP214 at 9q34.1 results in t(6;9)
is frequently associated with basophilia and is seen in both
pediatric and adult patients.43 It can present either as a sole
or a part of a complex karyotype and is an adverse risk
marker (►Fig. 3D).

Fig. 2 Flow chart showing strategy of FISH panel in newly diagnosed and postinduction follow-up AML patients.
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RPN1::MECOM-inv(3)(q21.3q26.2) or t(3;3)(q21.3;
q26.2)
Inversion(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2) involves
genes MECOM (EVI1) at 3q26.2 and RPN1 at 3q21.3 contrib-
uting as an unfavorable prognostic marker with a poor
outcome.44 Frequently, monosomy 7 accompanies rear-
rangements of MECOM (3q26.2) in 50% cases.45

RBM15::MRTFA – t(1;22)(p13.3;q13.1)
T(1;22)(p13.3;q13.1) leads to a fusion of RBM15 at 1p13.3
with MRTFA at 22q13.1 and is seen in 3 to 15% of pediatric
AML with median presentation age of 1 to 8 years.46,47 This
aberration is characteristic of acute megakaryoblastic leuke-
miawith conflicting reports on its prognostic significance, as
some series revealed a negative outcome while others sug-
gested a favorable one.48,49

Rearrangements of NUP98

NUP98 rearrangements are frequently found in 5% of pediat-
ric AML with an unfavorable outcome. More than 30 NUP98
fusion partners have been identified in numerous hemato-
logical malignancies.50 t(5;11)(q35;p15.5) and t(11;12)
(p15.5;p13) are cytogenetically cryptic aberrations, found
in CN-AML, and cannot be detected by CC, necessitating the
use of DC DF FISH probes: NUP98/NSD1 and NUP98/KDM5A,
respectively, for the identification of these poor risk abnor-
malities51,52 (►Fig. 3E).

Monosomy 5/deletion 5q

Deletion of the long arm of chromosome 5 [del(5q)] or
monosomy 5 can be reliably detected by CC or FISH using
deletion probes. Isolated del(5q) is known to have a favorable
outcome in MDS; however, in AML, this aberration is
regarded as an adverse prognostic marker associated with
complex karyotypes and poor response to intensive chemo-
therapy with 20 to 30% of patients achieving complete
remission for a short duration.4,53

Monosomy 7/deletion 7q

Monosomy 7 or deletion 7q, seen in approximately 10% AML
cases, is associated as high-risk cytogenetic marker.6 It
frequently occurs in conjunction with other unfavorable
cytogenetic abnormalities like complex karyotype (CK),
monosomy 5, or deletion 5q, or inv(3).4

TP53 deletion/del(17)(p13)

TP53 is a tumour suppressor gene present on short arm of
chromosome 17 and its loss is associated with disease
progression and dismal outcome. It is found in 3-5% of adult
AML patients. TP53 deletion positive patients have lower
WBC counts, are associated with high-risk cytogenetic
markers [�5/del(5q), �7/del(7q)], have CKs and poor or no
response to standard chemotherapy.7,54

Table 2 Recurrent and nonrecurrent cytogenetic abnormalities in AML detected by conventional karyotyping and FISH

Cytogenetic abnormality Genes involved Prognosis Conventional
karyotyping

FISH Type of
FISH probe

t(8;21)(q22;q22) RUNX1T1, RUNX1 Good Yes Yes DC DF

t(15;17)(q24.1;q21) PML, RARA Good Yes Yes DC DF

t(9;22)(q34.1;q11.2) BCR, ABL1 Poor Yes Yes DC DF

t(6;9)(p22;q34.1) DEK, NUP214 Poor Yes Yes DC DF

t(1;22)(p13.3;q13.1) RBM15, MRTFA Intermediate Yes Yes DC DF

t(?;11)(?;q23.3) KMT2A Poor Yes Yes BA

inv(16)(p13.1q22)/
t(16;16)(p13.1;q22)

MYH11, CBFB Good Yes Yes BA

inv(3)(q21q26.2)/
t(3;3)(q21;q26.2)

MECOM Poor Yes Yes BA

t(11;?)(p15;?) NUP98 Adverse No Yes BA

inv(16)(p13.1q24) CBFA2T3, GLIS2 Adverse No Yes BA/ DC DF

t(7;12)(q36;p13.1) MNX1, ETV6 Adverse No Yes BA/
DC DF

Monosomy 5/del(5q31/q33) CSF1R, EGR1 Poor Yes Yes DC/TC del

Monosomy 7/del(7q22/q36) KMT2E, CUL1 Poor Yes Yes DC/TC del

del(17)(p13) TP53 Poor Yes Yes DC del

Trisomy 8 – Intermediate Yes Yes CEP

Abbreviations: BA, break apart; CEP, centromere enumeration probe; DC DF, dual color dual fusion; DC/TC del, dual color/triple color deletion.
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Trisomy 8

Trisomy 8 is seen in approximately 10 to 20% of AMLs, either
as sole or as an additional abnormality with an intermediate

prognosis.55 It is seen as a secondary abnormality with t
(8;21), inv(16)/t(16;16), or t(15;17) and does not alter its
outcome.

Amplification of Oncogenes

Intrachromosomal amplifications of oncogenes like RUNX1
(21q22) or KMT2A (11q23.3) genes, rarely found in AML, are
defined more than three copies on a single chromosome and
are associated with poor prognosis and inferior out-
comes.56,57 These oncogenic amplifications either present
as a cluster on a single chromosome (homogeneously stained
regions-hsr), as doubleminutes, or are interspersed through-
out the genome.58 This aberration can be reliably identified
by FISH on interphase cells and confirmed on metaphases
using LSI RUNX1/RUNX1T1 probe59 (►Fig. 3F).

Complex Karyotype

CK is defined as the presence of three chromosomal struc-
tural aberrations in the absence of favorable cytogenetic
aberrations: t(8;21), inv(16)/t(16;16), and t(15;17)21

(►Fig. 3G). AML patients of this subgroup are unresponsive
to therapy and have an extremely dismal prognosis.60 Nu-
merous chromosome abnormalities, such as unbalanced
translocations, gains or losses of chromosomal segments,
doubleminutes, oncogenic amplifications,markers, chromo-
thripsis, and ring chromosomes are frequently present in
CKs, necessitating the use of both CC and FISH for their
detection.61

Monosomal Karyotype

Monosomal karyotype features either two autosomal
monosomies or one structural abnormality accompanied
by one autosomal monosomy (►Fig. 3H). MK affects up to
20% of older populations and accounts for about 10% of all
cases of AML and is associatedwith an unfavorable prognosis
with 4-year overall survival of 3% compared to 13% in non-
MK patients.62 Recognition of MK, is crucial in order to
apply alternative therapy to improve the associated poor
prognosis.

Quality Control for Fluorescence In Situ
Hybridization Probes

Every laboratory employing FISH testing for diagnostic
purposes must establish quality control/quality assurance
measures by validating each FISH probe utilized for analy-
sis. Determining cut-off values of every probe is also
crucial in the application of FISH for AML and other
hematological malignancies as these cytogenetic aberra-
tions are clonal in nature and require extremely high
sensitivity and specificity to detect minimal residual dis-
ease. Using the inverse beta function, confidence interval
around the mean, maximum likelihood, or other statistical
methods, every laboratory should uniformly establish the
cut-off values for FISH probes. Before putting the probe in

Fig. 3 Cytogenetic aberrations detected by FISH and CC. Metaphase-
FISH, inverted DAPI and G-banded partial karyotypes (A) t(8;21)(q22;
q22), (B) inv(16)(p13.1q22), (C) t(10;11)(p13;q23), (D) t(6;9)(p22;
q34.1), (E) cryptic NUP98 rearrangement: t(5;11)(q35;p15.5) by
metaphase-FISH, (F) intrachromosomal amplification of RUNX1, (G)
Complex karyotype, and (H) Monosomal karyotype.
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use, other factors like probe verification, specificity, and
sensitivity should be confirmed and documented for every
new lot received.63

Conclusion

Although high-resolution molecular profiling methods
like single nucleotide polymorphism array, Next genera-
tion sequencing and whole-genome sequencing are cru-
cial for discovering new chromosomal abnormalities,
especially fusions, they are impractical for routine diag-
nostic laboratories due to high cost, long turnaround
times, and requirement of expertise in bioinformatics.
CC will always be the gold standard, preferred method
due to its immense utility in genome-wide evaluations.
Application of FISH, as an adjunct to CC, is a powerful
strategy used today for identifying recurrent genetic
abnormalities that offer valuable information for progno-
sis, risk stratification, and disease diagnosis in hemato-
lymphoid malignancies.
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