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Epidemiology of Hereditary Breast 
and Ovarian cancer
Breast and ovarian cancers are major 
cancers affecting females. Majority of them 
are sporadic. However, 5%–10% of breast 
cancers[1] and 20% of ovarian cancers[2] 
may exhibit hereditary lineage. The most 
common genetic mutations among familial 
breast and ovarian cancers happen in 
BRCA1 and 2 genes. Germline mutations 
within either of them are found in 
approximately 5% of all breast cancer cases. 
These mutations are autosomal dominant 
with high penetrance and variance. The 
lifetime probability of developing breast 
cancer in individuals with BRCA1 and 2 
mutations is 57%–65% and 45%–49%, 
respectively. The probability of developing 
ovarian cancer in these individuals is 
39%–40% and 11%–18%, respectively.[3,4] 
These individuals are also prone to develop 
cancers of other organs such as prostate, 
male breast, and pancreas.[5]
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A large epidemiological study in germline 
BRCA‑mutated patients (gBRCA1m or 
gBRCA2m) showed that hormone receptor 
positivity (ER/PR) was more common in 
gBRCA2m than gBRCA1m patients (77% 
and 22%, respectively).[6] Interestingly, 
ER‑positive tumors in gBRCAm patients 
exhibit different histological features than 
sporadic tumors. They are more likely to 
be Luminal B type; have higher grade and 
higher Oncotype Dx scores. Furthermore, 
the proportion of ER‑positive tumors 
increases with increasing patient age in 
BRCA1m carriers but decreases with 
increasing age in BRCA2m carriers.[6] About 
70% of breast cancers among gBRCA1m 
patients are triple‑negative breast 
cancer (TNBC)[7] and BRCA1 or 2 mutation 
is thought to be present in nearly 20% of 
all TNBCs.[8]

The prevalence of somatic BRCA 
mutations has not been exactly assessed. 
Few studies have shown 3%–5% of 
all breast cancer cases[9,10] and nearly 
7%–8% of all ovarian cancer cases 
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to have somatic BRCA mutations only.[11] Although 
the prevalence of pure somatic mutations appears to 
be low, the growing role of PARP inhibitors in breast 
and ovarian cancers suggests that these patients might 
be the best possible beneficiaries of assessment for 
BRCA mutations in both the tissues and blood.[12] Some 
preliminary work has also suggested that few prostate 
cancers may have somatic BRCA mutations, and they 
may benefit by PARP inhibitors.[13]

DNA Damage and Role of BRCA in Check Point 
Activation and DNA Repair in Mammalian Cells
The cell triggers checkpoints and starts DNA repair 
process upon exposure to moieties causing DNA damage. 
If either of these mechanisms fails, it will lead to 
uncorrected mutations within the genome. This may lead 
to development of a cancer cell or in extreme scenario, 
‘self‑destructive or suicidal’ phenotype. Such cells are also 
exquisitely sensitive to DNA damaging agents such as 
ionizing radiation and platin analogs.[14‑17]

Protein kinases (PKs) ATM, ATR, Chk1, and Chk2 are 
involved in the regulation of G2M transition checkpoint. 
After ionizing radiation, ATM phosphorylates serine 
residues in C terminal of BRCA1.[18,19] This activates 
BRCA1 into further cascade. ATM activation also 
leads to Chk2 activation which phosphorylates, Ser988, 
in BRCA1.[20] This causes appropriate localization of 
BRCA1 upon DNA damage. Deficiency of ATM leads 
to failure of BRCA1 activation which leads to defective 
DSB repair. Cancers in patients of Ataxia Telangiectasia 
exhibit quite clinical similarity to BRCA1‑deficient 
patients.

DNA repair in mammalian cells takes place mainly 
through two processes; homologous recombination (HR) 
and nonhomologous end joining (NHEJ). NHEJ depends 
on DNA‑dependent PKs which add residues to the 
broken ends without any direct regard to homology with 
the sister strand. HR happens through the exchange of 
information between damaged strand and its normal sister 
counterpart. While NHEJ is more error prone, HR is more 
full‑proof mechanism of DNA repair and appears to be 
better conserved among all mammalian and eukaryotic 
species. BRCA2 appears to be essential for HR only as 
BRCA2 deficient cells still retain their ability to carry 
out NHEJ.[14,21,22] Function of BRCA1 in DNA repair is 
poorly understood. It appears to regulate the activity of the 
RAD50‑MRE11‑NBS1complex which may be involved 
in formation of new single‑strand DNA at the site of 
double‑strand breaks (DSBs).[23,24]

Structure and Function of BRCA Protein
BRCA1 and 2 encode two distinct proteins, respectively. 
These function in cellular pathways involved in DNA 
repair, especially DSBs.

BRCA1 protein

BRCA1 is a 220 kDa protein composed of 1863 amino 
acids. It has an N‑terminal RING domain useful in 
various protein–protein interactions.[25] It interacts with 
BRCA1‑associated RING domain protein 1 (BARD1), 
leading to increased ubiquitin ligase activity. The C‑terminus 
of BRCA1 contains two BRCT (BRCA1 C Terminal) 
domains, each composed of 95 amino acid sequences.[26] 
It has four beta‑sheets and three alpha‑helices.[27,28] The 
BRCT domain is the site for phosphorylation of various 
DNA repair proteins. Region of the protein between exon 
11 and 13 binds various proteins involved in different 
cellular pathways, such as retinoblastoma, c‑Myc, RAD50, 
RAD51, and PALB2.[29] The mutations in this region of 
the protein result in altered three dimensional structure 
resulting in misfolding or destabilization. This may prevent 
appropriate localization of the protein as well as faulty 
dimerization resulting in loss of its function.[28]

BRCA2 protein

BRCA2 is a 385kDA protein is composed of 3418 amino 
acids. It has N‑terminus transactivation domain, a long exon 
11 binding specifically to RAD51 and a C‑terminus binding 
DNA.[30] It consists of eight BRC repeats (30–40 amino acid 
motifs each) encoded by exon 11. It is unique to various 
mammalian species and appears to perform the essential 
function of HR for double‑stranded DNA breaks.[31,32] 
BRCA1 and 2 interact with each other through PALB2. The 
complex associates with RAD51 for HR.[33]

Subcellular dynamics of BRCA proteins

BRCA1 and 2 proteins have similarities in subcellular 
localization and patterns of expression. Usually, their levels 
are highest in S phase. They have clusters at subnuclear 
levels which get redistributed in response to DNA damage. 
In meiotic cells, both proteins are found to colocalize to the 
synaptonemal complexes.[34‑38]

BRCA2 appears to have high stoichiometry with RAD51 
and is demonstrable in yeast two‑hybrid system and 
in vitro studies with recombinant protein fragments.[39] It 
also appears to carry out intracellular transport and control 
function of RAD51 which is an important enzyme in DNA 
repair pathway.[40] A similar interaction between BRCA1 
protein and RAD 51 is less understood and at best can be 
of low stoichiometry and indirect involving multiple other 
proteins yet unknown.[41]

Various BRCA mutations

BRCA mutations are very diverse. Majority have no known 
functional significance. Certain mutations exhibit strong 
pathogenicity. We will review a few commonly found 
pathogenic BRCA mutations.

The classical mutation found in BRCA1 gene in the Ashkenazi 
Jewish and European population is the 5382insC. Such 
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individuals are at higher risk of getting ovarian cancer than 
breast cancer.[42] The most common mutation found in Indian 
and few Ashkenazi Jewish populations in BRCA1 gene is 
185delAG. A peculiar mutation found in Polish community 
is a missense mutation at the Cys61 (C61G) of BRCA1. This 
has now been included as a standard test among investigational 
workup of breast and ovarian cancer patients in Poland.[43,44]

6174delT mutation is classical in BRCA2 gene among the 
Jewish community.[45] There are many more diverse mutations 
reported from various parts of the globe.[42] There are also 
few cases reported having both BRCA1 and 2 mutations 
in the same individual. These patients develop cancers at a 
much earlier age and have more severe disease.[46,47]

By and large, mutations causing ovarian cancer tend to be 
located in the central part of both genes, while mutations 
related to breast cancer appear to be located at 5’ and 3’ 
ends of these genes.[48]

Genetic Changes in Sporadic Tumors with 
BRCA Dysfunction
Sporadic breast and ovarian cancers may have BRCA1 
inactivation due to nongenomic mechanisms like promoter 
methylation that result in lowering of gene expression. On 
the contrary, loss of BRCA2 function in sporadic tumors 
does not occur by promoter hypermethylation. Many of 
such tumors show amplification of EMSY. This protein is 
a stabilizer of BRCA2 protein reducing the activity of the 
later. Hence, it acts like a downregulator of the BRCA2 
function in the HR pathway. Amplification of the same 
causes functional inactivation of BRCA2 protein.[49]

Enhanced Susceptibility of BRCA‑Mutated Cells 
to Platins
Platinum analogues such as cisplatin and carboplatin etc., 
have shown higher efficacy against breast and ovarian cancer 
cells lacking BRCA function. This is due to DNA cross‑links 
formed by platins which remain unrepaired in BRCA‑mutated 
cells causing “Synthetic Lethality.”[50‑52] TNBC cell lines 
show up to 83% pathologic complete response rates upon 
treatment with neoadjuvant cisplatin‑based chemotherapy. 
Such high responses have been also associated with BRCA 
mutations or lack of BRCA expression.[53] TNT trial 
showed significant OS and PFS benefit due to carboplatin 
in BRCA‑mutated TNBC patients.[54,55] Similar results have 
been seen in ovarian cancer patients with BRCA mutations. 
They have shown higher responses to platinum drugs with 
a better survival (91 vs. 54 months) and longer disease‑free 
interval (49 vs. 19 months) as compared to BRCA wild type 
cancers.[56,57]

Therapeutic Impact of BRCA Mutations
BRCA mutational status has been shown to have 
a significant influence on the decision‑making in 
management of these patients and their affected relatives. 

Breast conservative surgery and radiotherapy data have 
shown that local recurrence rates in BRCA‑mutated 
and wild‑type patients are similar.[58‑61] Risk‑reducing 
salpingo‑oophorectomy (RRSO) after diagnosis of breast 
cancer in BRCA‑mutated patients has been shown to 
reduce subsequent breast cancer recurrence and related 
mortality by 50%–70%. This effect is more pronounced for 
ER‑negative breast cancer than ER‑positive patients. RRSO 
also has shown to reduce risk of ovarian cancer by 90%.[62]

Cells with defective DNA repair pathways rely on 
mechanisms for single‑stranded DNA repair prominently 
through poly (ADP‑ribose) polymerase‑1 (PARP‑1). So 
if PARP‑1 is also inhibited, cell cannot repair any DNA 
lesions, and this produces a condition called ‘Synthetic 
Lethality’ in which cell undergoes apoptosis due to 
accumulating DNA lesions.[63] This phenomenon has been 
therapeutically exploited and such PARP inhibitors have 
shown significant and sustained reduction in proliferation and 
survival of BRCA mutated cancer cells and xenografts.[64,65] 
PARP inhibitors have shown good response rates among 
BRCA‑mutated breast and ovarian cancer patients.[66]

BRCAness and Scoring Systems
With better understanding of BRCA gene functions, its 
mutations and their impact on DNA repair mechanisms 
resulting in malignancies with peculiar phenotype; 
researchers are trying to assess a broader entity of deficiency 
of HR. Various histopathology based assays are being 
developed and tested to understand the level of HR deficiency 
regardless of specific genes responsible for it. This, so‑called 
BRCAness, can be imparted due to epigenetic silencing or 
germline mutations in various genes involved in HR.[52] Such 
a deficit can potentially be exploited therapeutically with 
advent of specific inhibitors of various enzymes involved in 
DNA repair, such as PARP inhibitors, which would induce 
‘Synthetic Lethality’ in such tumors.[13,67,68]

Most widely studied scoring systems for assessing HR 
deficiency are; HR defect (HRD) large‑scale transition, 
HRD‑loss‑of‑heterozygosity, and HRD‑telomeric allelic 
imbalance.[69‑71] Various studies have shown them to be able 
to predict response to platinum therapy in metastatic TNBC 
patients.[72] Studies are underway to predict their utility in 
the neoadjuvant setting also.[71,73]

A more direct approach to understand the possibility 
of BRCA1/2 mutations in the tumor (somatic or germ 
line) depending on six different molecular signatures, 
called HRDetect, is being evaluated to predict BRCA 
dysfunction (direct/indirect). Preliminary analysis has 
shown it to be highly sensitive (up to 99%) to identify 
functionally BRCA‑deficient tumors.[74]

Future Perspectives
With increasing knowledge of BRCA function, its 
associated pathways and potential therapeutic implications 
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in these patients; there are many questions which need 
to be answered about these pathways. There needs to be 
accurate population‑wise assessment of the prevalence of 
these dysfunctions in various communities. Furthermore, 
role of germ line or somatic BRCA dysfunction in other 
malignancies such as prostate cancers and gastrointestinal 
cancers needs to be probed. Therapeutic exploitation of 
the concept of synthetic lethality needs to be taken to a 
next level beyond PARP inhibition. We need to explore 
the feasibility of BRCA protein inhibition; which if 
comes true can pave the way to greater utilization of 
this phenomenon into all solid organ malignancies as an 
adjunct for platinum‑based chemotherapy even in BRCA 
wild‑type cases. More defined interdisciplinary approach 
toward exploring these mutations involving clinicians, 
basic scientists, experts from proteomics, etc., needs to be 
developed in future.
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