Home | About IJMPO | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Indian Journal of Medical and Paediatric Oncology
Search Article 
Advanced search 

Previous Article  Table of Contents   Next Article    
Year :   |  Volume :   |  Issue :   |  Page :  

Nanotechnology in oncology

1 Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
2 Department of Medical Oncology, Homi Bhabha Cancer Hospital and Research Centre, Visakhapatnam, Andhra Pradesh, India

Date of Submission21-Apr-2020
Date of Decision27-May-2020
Date of Acceptance04-Aug-2020
Date of Web Publication18-Nov-2020

Correspondence Address:
Srujana Joga,
Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijmpo.ijmpo_181_20

How to cite this URL:
Joga S, Koyyala V P. Nanotechnology in oncology. Indian J Med Paediatr Oncol [Epub ahead of print] [cited 2020 Dec 3]. Available from: https://www.ijmpo.org/preprintarticle.asp?id=300667

Almost all chemotherapy agents act on healthy tissues along with cancerous tissues, resulting in the adverse effects and suboptimal doses to the tumor sites. The advent of nanotechnology in medicine enabled us to encapsulate the drugs with a nano-sized particle and thereby deliver these drugs with high precision to the tumor site. This technology has opened a new vista of opportunities in clinical medicine, Medical Oncology in particular.

Richard Feynman way back in 1959 mentioned in his famous lecture and advised the scientific community, to think small for future innovations in science. This laid foundation stone to a new era in science and technology which is today's Nanotechnology. The term “Nano” literally means a dwarf in the Greek language.[1] Nanotechnology is a branch of science dealing with particles ranging from the size between one and one thousand nanometers. Nanomedicine is a subspecialty of nanotechnology exploring its applications in the medical field.[2]

  Nanoparticle/nanocarrier Properties Top

  1. Size: The first property is their smaller size which enables them to reach and accumulate more in tumor tissues, as the vasculature of the tumors is leaky with imperfect basement membrane due to neoangiogenesis
  2. Shape: The spherical shape of this particle leads to a higher ratio of surface to volume leads to more uptake in tumor tissues
  3. Surface: With the advent of newer technologies, the surface of these particles can be modified in such a way that their half-life in the blood can be more than conventional drugs and their uptake is preferably done by certain tissues through the process of cellular endocytosis and pinocytosis
  4. Charge: The charges over these particles can be made to be variable in various tissues. For example, they can have a positive charge at infusion so that they target blood vessels immediately after infusion, and they can be made to switch to neutral charge after entering the tissues allowing faster diffusion into tumor tissues
  5. Solubility, Degradation, and Clearance: Hydrophilic nanoparticles improve water solubility, prevents degradation and clearance by the reticuloendothelial system, thereby increasing the stability and bioavailability of the drug. The application of polyethylene glycol over nanoparticles achieves this property of hydrophilicity
  6. Targeting: The main advantage in the nanoparticle-mediated drug-delivery systems is the release of drug after reaching the target. This can be achieved through three different mechanisms:[3]

    1. Active targeting: By ligand (on nanoparticle) – receptor (on tumor cell surface) binding
    2. Passive targeting: Accumulation of Nab-paclitaxel in pancreatic tumor tissue is a typical example of this mechanism where enhanced permeability and retention effect is achieved because of the neoangiogenesis in tumor tissues with leaky blood vessels
    3. Triggered release: This can be achieved by release systems operating upon specific stimulus or trigger acting at the target site. This trigger can be internal in the tissue like changes in pH compared to intravascular space, differences in the redox potential of tissues, changes in charges and ionic strength, etc., In specific conditions, external stimuli can be used to mediate drug or chemical release from the nanoparticle. Some technologies are using physical stimuli like hyperthermia to dislodge drug in a particular tissue and also the infra-red and ultraviolet wavelength of light for the release of drugs in superficial tissues such as skin and subcutaneous tissues.

  Types of Nanoparticles Top

  1. Organic substances: like proteins, lipids, protein-lipid polymers, liposomal particles, gelatins such as hydrogels, etc., are commonly used
  2. Inorganic substances: like silica, hafnium oxide, gold, magnetic particles
  3. Drug conjugates with antibodies
  4. Viral nanoparticles.

Applications of nanotechnology in oncology

Coming to the uses of nanoparticles in oncology, they are used extensively in diagnostic applications, therapeutic purposes, and a combination of both referred to as theranostic applications [Table 1].[4]
Table 1: Applications of nanotechnology

Click here to view


Nanoparticles have large surface area to volume ratio, due to which they can be densely covered with antibodies, small molecules, peptides, aptamers, and other moieties. These moieties can bind and recognize specific cancer molecules. Quantum dots, gold nanoparticles (AuNPs), and polymer dots are three common nanoparticle probes used in diagnosing cancer.

Detection of biomarkers

  • A zinc oxide (ZnO) QD-based immunoassay was developed for the detection of CEA in predicting tumor recurrence after the completion of colorectal cancer treatment
  • Gold nanoparticles for the detection of Her2 in breast cancer
  • Various nanoparticles are used as to detect DNA, RNA, miRNA sequences, methylation of histone proteins, and extracellular vesicles.

Detection of cancer cells

Circulating tumor cells (CTCs) are already approved by the FDA for prognostication in some cancers such as colorectal, breast, and prostate cancers. However, it is difficult to isolate CTCs in earlier stage due to their small number. Nanoparticles help in capturing and isolating CTCs by targeting some tumor-specific proteins among billions of cells, literally picking a needle in a haystack.

Ex.: Detection of epithelial cell adhesion molecule using magnetic nanoparticles.

In vivo imaging

Nanoparticle probes preferentially accumulate in tumor tissues through active or positive targeting, thereby a very useful tool in radiodiagnosis.[5] Ongoing clinical trials with nanotechnology-based applications in cancer diagnosis are listed below:

  • Carbon nanoparticles as lymph node tracer in rectal cancer after neoadjuvant radiochemotherapy
  • Silica-hybrid nanoparticles for PET imaging of patients with metastatic melanoma or malignant brain tumors
  • Nanoparticles are being evaluated as specific “Immunosensors” to detect DNA, RNA, miRNA sequences, methylation of histone proteins, and extracellular vesicles.


Targeted drug delivery

The main therapeutic application is to increase the efficacy and decrease the toxicity of conventional chemotherapeutic agents by targeted delivery. Some of the commonly used drugs are mentioned in [Table 2].
Table 2: Nanomedicines in oncology

Click here to view

Overcoming multidrug resistance

Of the many mechanisms of drug resistance in chemotherapeutic agents, one of the most important and common mechanism is the overexpression of P-glycoprotein (p-gp) over tumor tissues, which mediates the drug efflux and so-called multi-drug resistance (MDR). Nanoparticles can help overcome this in the following ways:

  1. Simultaneous delivery of the drug to tumors and inhibition of the MDR proteins
  2. Partially bypassing the efflux pump as they are internalized by endocytosis
  3. Downregulate the expression of p-gp using siRNA.

Abscopal effect

Radiotherapy-activated hafnium oxide nanoparticles (NBTXR3) kill more cancer cells than radiotherapy alone in distant tumors due to increased CD8+ lymphocyte T-cell infiltrates-an abscopal effect.


Nanoparticles are to play a major role in personalized medicine by their application in the branch of theranostics where drugs are used simultaneously to diagnose and treat the medical conditions.

As with every new innovation, there are pros and cons[6] for nanotechnology also as listed in [Table 3].
Table 3: Advantages and disadvantages of nanotechnology

Click here to view

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nano medicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015;200:138-57.  Back to cited text no. 1
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J Hematol Oncol 2019;12:137.  Back to cited text no. 2
Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: A review of recent success in drug delivery. Clin Transl Med 2017;6:44.  Back to cited text no. 3
Pillai G. Nanotechnology toward treating cancer: A comprehensive review. In: Applications of Targeted Nano Drugs and Delivery Systems. Cambridge, USA: Elsevier; 2019. p. 221-56.  Back to cited text no. 4
Bhandare N, Narayana A. Applications of nanotechnology in cancer: A literature review of imaging and treatment. J Nucl Med Radiat Ther 2014;5:195.  Back to cited text no. 5
Benefits of Nanotechnology for Cancer-National Cancer Institute, Division of Cancer Treatment and Diagnosis. Available from: https://www.cancer.gov/nano/cancer-nanotechnology/benefits. [Last accessed on 2020 May 18].  Back to cited text no. 6


  [Table 1], [Table 2], [Table 3]


Previous Article  Next Article
     Search Pubmed for
    -  Joga S
    -  Koyyala V P
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
   Types of Nanopar...
   Article Tables

 Article Access Statistics
    PDF Downloaded5    

Recommend this journal